PALANCAS.
El hombre, desde los inicios de los tiempos ha ideado mecanismos que le permitan ahorrar energía y con ello lograr que sus esfuerzos físicos sea cada vez menores.
Entre los diversos mecanismos para hacer más eficientes sus esfuerzos se pueden citar las poleas, los engranajes y las palancas.
La palanca es una máquina simple que se emplea en una gran variedad de aplicaciones.
Probablemente, incluso, las palancas sean uno de los primeros mecanismos ingeniados para multiplicar fuerzas. Es cosa de imaginarse el colocar una gran roca como puerta a una caverna o al revés, sacar grandes rocas para habilitar una caverna.
Con una buena palanca es posible mover los más grandes pesos y también aquellos que por ser tan pequeños también representan dificultad para tratarlos.
Se cuenta que el propio Galileo Galilei habría dicho: "Dadme un punto de apoyo y moveré el mundo". En realidad, obtenido ese punto de apoyo y usando una palanca suficientemente larga, eso es posible.
En nuestro diario vivir son muchas las veces que “estamos haciendo palanca”. Desde mover un dedo o un brazo o un pie hasta tomar la cuchara para beber la sopa involucra el hacer palanca de una u otra forma.
¿QUÉ ES UNA PALANCA?
Básicamente está constituida por una barra rígida, un punto de apoyo (se le puede llamar “fulcro”) y dos fuerzas (mínimo) presentes: una fuerza (o resistencia) a la que hay que vencer (normalmente es un peso a sostener o a levantar o a mover en general) y la fuerza (o potencia) que se aplica para realizar la acción que se menciona. La distancia que hay entre el punto de apoyo y el lugar donde está aplicada cada fuerza, en la barra rígida, se denomina brazo. Así, a cada fuerza le corresponde un cierto brazo.
Como en casi todos los casos de máquinas simples, con la palanca se trata de vencer una resistencia,situada en un extremo de la barra, aplicando una fuerza de valor más pequeño que se denominapotencia, en el otro extremo de la barra.
En una palanca podemos distinguir entonces los siguientes elementos:
El punto de apoyo o fulcro.
Potencia: la fuerza (en la figura de abajo: esfuerzo) que se ha de aplicar.
Resistencia: el peso (en la figura de abajo: carga) que se ha de mover.
El brazo de potencia (b2) : es la distancia entre el fulcro y el punto de la barra donde se aplica la potencia.
El brazo de resistencia (b1): es la distancia entre el fulcro y el punto de la barra donde se encuentra la resistencia o carga.
¿CUÁNTOS TIPOS DE PALANCA HAY?
Según lo visto en la figura y lo definido en el cuadro superior, hay tres tipos de palancas:
Palanca de primer tipo o primera clase o primer grupo o primer género:
Se caracteriza por tener el fulcro entre la fuerza a vencer y la fuerza a aplicar.
Esta palanca amplifica la fuerza que se aplica; es decir, consigue fuerzas más grandes a partir de otras más pequeñas.
Por ello, con este tipo de palancas pueden moverse grandes pesos, basta que el brazo b1 sea más pequeño que el brazo b2.
Algunos ejemplos de este tipo de palanca son: el alicates, la balanza, la tijera, las tenazas y el balancín.
Algo que desde ya debe destacarse es que al accionar una palanca se producirá un movimiento rotatorio respecto al fulcro, que en ese caso sería el eje de rotación.
Palanca de segundo tipo o segunda clase o segundo grupo o segundo género:
Se caracteriza porque la fuerza a vencer se encuentra entre el fulcro y la fuerza a aplicar.
Palanca de tercer tipo o tercera clase o tercer grupo:
Se caracteriza por ejercerse la fuerza “a aplicar” entre el fulcro y la fuerza a vencer.
Este tipo de palanca parece difícil de encontrar como ejemplo concreto, sin embargo… el brazo humano es un buen ejemplo de este caso, y cualquier articulación es de este tipo, también otro ejemplo lo tenemos al levantar una cuchara con sopa o el tenedor con los tallarines, una corchetera funciona también aplicando una palanca de este tipo.
Palancas múltiples: Varias palancas combinadas.
Por ejemplo: el cortaúñas es una combinación de dos palancas, el mango es una combinación de 2º género que presiona las hojas de corte hasta unirlas. Las hojas de corte no son otra cosa que las bocas o extremos de una pinza y, constituyen, por tanto, una palanca de tercer género.
Tomado de: www.profesorenlinea.cl/fisica/PalancasConcepto.htm
POLEAS
Una polea, es una máquina simple que sirve para transmitir una fuerza. Se trata de una rueda, generalmente maciza y acanalada en su borde, que, con el curso de una cuerda o cable que se hace pasar por el canal ("garganta"), se usa como elemento de transmisión para cambiar la dirección del movimiento en máquinas y mecanismos. Además, formando conjuntos —aparejos o polipastos— sirve para reducir la magnitud de la fuerza necesaria para mover un peso.
Según definición de Hatón de la Goupillière, «la polea es el punto de apoyo de una cuerda que moviéndose se arrolla sobre ella sin dar una vuelta completa» actuando en uno de sus extremos la resistencia y en otro la potencia.
DESIGNACION Y TIPOS
Los elementos constitutivos de una polea son la rueda o polea propiamente dicha, en cuya circunferencia (llanta) suele haber una acanaladura denominada "garganta" o "cajera" cuya forma se ajusta a la de la cuerda a fin de guiarla; las "armas", armadura en forma de U invertida o rectangular que la rodea completamente y en cuyo extremo superior monta un gancho por el que se suspende el conjunto, y el "eje", que puede ser fijo si está unido a las armas estando la polea atravesada por él ("poleas de ojo"), o móvil si es solidario a la polea ("poleas de eje"). Cuando, formando parte de un sistema de transmisión, la polea gira libremente sobre su eje, se denomina "loca".
Según su desplazamiento las poleas se clasifican en "fijas", aquellas cuyas armas se suspenden de un punto fijo (la estructura del edificio) y, por lo tanto, no sufren movimiento de traslación alguno cuando se emplean, y "móviles", que son aquellas en las que un extremo de la cuerda se suspende de un punto fijo y que durante su funcionamiento se desplazan, en general, verticalmente.
Cuando la polea obra independientemente se denomina "simple", mientras que cuando se encuentra reunida con otras formando un sistema recibe la denominación de "combinada" o "compuesta".
POLEAS SIMPLES.
La polea simple se emplea para elevar pesos, consta de una sola rueda con la que hacemos pasar una cuerda.
Se emplea para cambiar el sentido de la fuerza haciendo más cómodo el levantamiento de la carga, entre otros motivos, porque nos ayudamos del peso del cuerpo para efectuar el esfuerzo, la fuerza que tenemos que hacer es la misma al peso a la que tenemos que levantar.
F = R
Polea simple fija
La manera más sencilla de utilizar una polea es colgar un peso en un extremo de la cuerda, y tirar del otro extremo para levantar el peso.
Una polea simple fija no produce una ventaja mecánica: la fuerza que debe aplicarse es la misma que se habría requerido para levantar el objeto sin la polea. La polea, sin embargo, permite aplicar la fuerza en una dirección más conveniente.
Polea simple móvil
Una forma alternativa de utilizar la polea es fijarla a la carga un extremo de la cuerda al soporte, y tirar del otro extremo para levantar a la polea y la carga.
La polea simple móvil produce una ventaja mecánica: la fuerza necesaria para levantar la carga es justamente la mitad de la fuerza que habría sido requerida para levantar la carga sin la polea. Por el contrario, la longitud de la cuerda de la que debe tirarse es el doble de la distancia que se desea hacer subir a la carga.
POLEAS COMPUESTAS
Existen sistemas con múltiples de poleas que pretenden obtener una gran ventaja mecánica, es decir, elevar grandes pesos con un bajo esfuerzo. Estos sistemas de poleas son diversos, aunque tienen algo en común, en cualquier caso se agrupan en grupos de poleas fijas y móviles: destacan los polipastos:
Polipastos o aparejos
El polipasto (del latín polyspaston, y éste del griego πολύσπαστον), es la configuración más común de polea compuesta. En un polipasto, las poleas se distribuyen en dos grupos, uno fijo y uno móvil. En cada grupo se instala un número arbitrario de poleas. La carga se une al grupo móvil.
Tomado de : es.wikipedia.org/wiki/Polea
LEYES DE NEWTON.
Durante muchos siglos se intentó encontrar leyes fundamentales que se apliquen a todas o por lo menos a muchas experiencias cotidianas relativas al movimiento. Fue un tema central de la filosofía natural. No fue sino hasta la época de Galileo y Newton cuando se efectuaron dramáticos progresos en la resolución de esta búsqueda.
Isaac Newton (1642 - 1727), nacido el año que murióGalileo, es el principal arquitecto de la mecanica clasica, la cual se resume en sus tres leyes del movimiento.
Antes de la época de Galileo, la mayoría de los pensadores o filósofos sostenía que se necesitaba alguna influencia externa o "fuerza" para mantener a un cuerpo en movimiento. Se creía que para que un cuerpo se moviera con velocidad constante en línea recta necesariamente tenía que impulsarlo algún agente externo; de otra manera, "naturalmente" se detendría. Fue el genio de Galileo el que imaginó el caso límite de ausencia de friccion e interpretó a la fricción como una fuerza, llegando a la conclusión de que un objeto continuará moviéndose con velocidad constante, si no actúa alguna fuerza para cambiar ese movimiento.
Las tres leyes de Newton del movimiento son las llamadasleyes clasicas del movimiento. Ellas iluminaron por 200 años el conocimiento científico y no fueron objetadas hasta que Albert Einstein desarrolló la teoría de la relatividaden 1905.
Primera Ley de Newton, de la Inercia
Establece que si la fuerza neta sobre un objeto es cero, si el objeto está en reposo, permanecerá en reposo y si está en movimiento permanecerá en movimiento en línea recta con velocidad constante. Un ejemplo de esto puede encontrarse en el movimiento de los meteoritos y asteroides, que vagan por el espacio en línea recta a velocidad constante, siempre que no se encuentren cercanos a un cuerpo celeste que los desvíe de su trayectoria rectilínea.
La tendencia de un cuerpo a resistir un cambio en su movimiento se llama inercia. La masa es una medida de la inercia de un cuerpo. El peso se refiere a la fuerza de gravedad sobre un cuerpo, que no debe confundirse con su masa.
Segunda Ley de Newton, de la Masa
Indica que la aceleracion de un cuerpo es directamente proporcional a la fuerza neta que actúa sobre él, e inversamente proporcional a su masa.
F = ma
Este tema está tratado y se accede presionando: Segunda Ley de Newton.
Tercera Ley de Newton, Principo de Accion y Reaccion
Establece que siempre que un cuerpo ejerce una fuerza sobre un segundo cuerpo, el segundo cuerpo ejerce una fuerza sobre el primero cuya magnitud es igual, pero en dirección contraria a la primera.
Tomado de: www.jfinternational.com/mf/leyes-newton.html
FISICOS NOTABLES
GALILEO GALILEI
Galileo tuvo conocimiento de que en Holanda se había inventado un tubo con una lente en un extremo, que permitía ampliar la visión de los objetos que se encontraban a gran distancia. Cuando lo supo, se le ocurrió utilizarlo para observar el firmamento. No fue el inventor del telescopio, ni tampoco debió ser el primero en usarlo para mirar el cielo; ¿ pero entonces, porqué fue tan importante?.
Realizó importantes observaciones del firmamento. Vió que en el sol había unas manchas, lo cual refutaba la teoría de Aristóteles, acerca de un firmamento perfecto. También observó las fases de Venus, y la existencia de cuatro satélites alrededor de Júpiter.
Estos descubrimientos le ayudaron a creer y a avalar la teoría expuesta por el polaco Nicolás Copérnico unos años antes; lo que le costó la vida al ser ejecutado por la Inquisición por afirmar que la Tierra y los planetas se movían alrededor del Sol.
ISAAC NEWTON
En la época de Galileo, (por experimentos del mismo) se sabía que los cuerpos caían con la misma aceleración independientemente de su peso; y que los astros también obedecían a determinadas leyes de movimiento.
Newton dio finalmente una expresión matemática al movimiento de los cuerpos y de los astros. Enunció las siguientes leyes:
# Un cuerpo permanece quieto o en reposo si no actúa sobre él una fuerza exterior.
# La aceleración producida en un cuerpo es tanto mayor cuanto menor sea su masa y mayor sea la fuerza sobre él aplicada.
# A toda fuerza (acción) se le opone otra (reacción).
A partir de estas leyes, Newton dedujo su ley de la gravitación universal, que podemos expresar de la siguiente manera:
m1 . m2
F = G
d2
JOHANES KEPLER
Kepler se dio cuenta de que las órbitas circulares no se ajustaban a las observaciones y buscó otras curvas que sí lo hicieran. Al utilizar la elipse, comprobó que la opción era correcta.
La elipse es una curva que parece una circunferencia aplastada. Tiene dos ejes, uno más largo que el otro. Y en lugar de centro, como la circunferencia, tiene dos puntos, llamados focos, que se encuentran a la misma distancia del punto en donde se cruzan los ejes.
Enunció las siguientes leyes:
# Los planetas describen elipses, en uno de cuyos focos está el sol.
# El segmento de recta que determina el Sol con un planeta (llamado radio vector de un planeta), describe en tiempos iguales áreas iguales.
# Los cuadrados de los períodos de revolución de los planetas son directamente proporcionales a los cubos de los ejes mayores de sus respectivas elipses.
TORRICELLI
Matemático y físico italiano, discípulo de Galileo. Inventó el barómetro de mercurio. Enunció los principios que llevan su nombre: la velocidad de salida de un líquido contenido en un recipiente por un pequeño orificio situado a un desnivel h de la superficie, es la que poseería un grave que cayese libremente desde la altura h.
ROBERT HOOKE
Matemático, físico y astrónomo inglés, que estudió el movimiento de los astros; intuyendo la propagación ondulatoria de la luz, e hizo estudios sobre la gravedad.
Atacó duramente a Newton acusándolo de supuestos plagios a sus descubrimientos.
Inventó el "Muelle de Balanza" y el Resorte en espiral para los relojes; estudiando las relaciones entre tensiones, y deformaciones en los cuerpos elásticos.
Enunció la ley que lleva su nombre: "Las deformaciones que experimentan los cuerpos, mientras no superen un cierto valor, son proporcionales a las causas que las producen".
Tomado de: www.monografias.com
|